Shadow Dexterous Hand.
Shadow Dexterous Hand.
Source: Shadow Robot Company

Robot hands one step closer to human

The Shadow Robot Dexterous Hand is a robot hand, with size, shape and movement capabilities similar to those of a human hand. To give the robotic hand the ability to learn how to manipulate objects researchers from WMG, University of Warwick, have developed new AI algorithms.

Robot handscan be used in many applications, such as manufacturing,手术and dangerous activities like nuclear decommissioning. For instance, robotic hands can be very useful in computer assembly where assembling microchips requires a level of precision that only human hands can currently achieve. Thanks to the utilization of robot hands in assembly lines, higher productivity may be achieved whilst securing reduced exposure from work risk situations to human workers.

In the paper, "Solving Challenging Dexterous Manipulation Tasks With Trajectory Optimisation and Reinforcement Learning," researchers Professor Giovanni Montana and Dr. Henry Charlesworth from WMG, University of Warwick have developed newAI algorithms—or the "brain"—required to learn how to coordinate the fingers' movements and enable manipulation.

Using physically realistic simulations of Shadow's robotic hand, the researchers have been able to make two hands pass and throw objects to each other, as well as spin a pen between its fingers. The algorithms however are not limited to these tasks but can learn any task as long as it can be simulated. The 3Dsimulationswere developed using MuJoCo (Multi-Joint Dynamics withContact), a physics engine from the University of Washington.

The researchers' approach uses two algorithms. Initially, a planning algorithm produces a few approximate examples of how the hand should be performing a particular task. These examples are then used by a reinforcement learning algorithm that masters the manipulation skills on its own. By taking this approach, the researchers have been able to produce significantly better performance compared to existing methodologies. The simulation environments have been made publicly available for any researcher to use.

Robot hands one step closer to human
Source: Shadow Robot Company

Now that the algorithms have been successful in the simulations, Professor Montana's team will continue to work closely with Shadow Robot and test the AI methodology on real robotic hardware, which could see the hand advance one step closer to use in the real day to day life.

In a second paper, "PlanGAN: Model-based Planning With Sparse Rewards and Multiple Goals," to be presented at the 2021 NeurIPS conference, the WMG researchers have also developed a novel and general AI approach that enables robots to learn tasks such as reaching and moving objects, which will further improve hand manipulation applications.

Professor Giovanni Montana, from WMG, University of Warwick comments, "The future of digitalisation relies on AI algorithms that can learn autonomously, and to be able to develop algorithms that give Shadow Robot's hand the ability to operate like a real one is without any human input is an exciting step forward. These autonomous hands could be used in the future to deliver robotic surgeons, to increase the productivity of assembly lines and to replace humans in dangerous jobs such as bomb disposal."

"In future work we will let the robots perceive the environment as accurately as humans do, not only through computer vision algorithms that can see the world, but through sensors that detect temperature, force and vibrations so the robot can learn what to do when it feels those sensations."

Rich Walker, managing director of the Shadow Robot Company, in London, comments: "When we started building dexterous hands, it was because there was no way to get hold of one without building it! 20 years later, we are now seeing researchers like Giovanni deliver the promise of the hardware by creating algorithms clever enough to control the robot hand—soon perhaps we will see super-human performance?"

Subscribe to our newsletter

Related articles

Expanding human-robot collaboration in manufacturing

Expanding human-robot collaboration in manufacturing

To enhance human-robot collaboration, researchers at Loughborough University have trained an AI to detect human intention.

A contact aware robot design

A contact aware robot design

Researchers have developed a new method to computationally optimize the shape and control of a robotic manipulator for a specific task.

Breakthrough optical sensor mimics human eye

Breakthrough optical sensor mimics human eye

Researchers are making key advances with a new type of optical sensor that more closely mimics the human eye’s ability to perceive changes in its visual field.

Medical technology 2020 – a review

Medical technology 2020 – a review

Covid-19 gave many of these predictions for 2020 an entirely new spin: while some of the hyped trends turned out to play only bit-parts others became box-office hits in the new normal.

Robots encourage risk-taking behaviour in humans

Robots encourage risk-taking behaviour in humans

“The Robot made me do it” - research has shown robots can encourage humans to take greater risks in a simulated gambling scenario than they would if there was nothing to influence their behaviours.

Mini-brains help robots recognise pain

Mini-brains help robots recognise pain

Using a brain-inspired approach, scientists have developed a way for robots to have the AI to recognise pain and to self-repair when damaged.

AI system for recognition of hand gestures

AI system for recognition of hand gestures

Scientists have developed an AI system that recognises hand gestures by combining skin-like electronics with computer vision.

Robotic hand merges amputee and robotic Control

Robotic hand merges amputee and robotic Control

Scientists have successfully tested neuroprosthetic technology that combines robotic control with users’ voluntary control, opening avenues in the new interdisciplinary field of shared control for neuroprosthetic technologies.

Exceptional sensitive e-skin for prosthetics

Exceptional sensitive e-skin for prosthetics

Researchers have developed an e-skin that may soon have a sense of touch equivalent to, or better than, the human skin with the Asynchronous Coded Electronic Skin (ACES).

Popular articles

Subscribe to Newsletter
Baidu